AN EXTENSION OF THE HARDY-RAMANUJAN CIRCLE METHOD AND APPLICATIONS TO PARTITIONS WITHOUT SEQUENCES By KATHRIN BRINGMANN and KARL MAHLBURG
نویسندگان
چکیده
We develop a generalized version of the Hardy-Ramanujan “circle method” in order to derive asymptotic series expansions for the products of modular forms and mock theta functions. Classical asymptotic methods (including the circle method) do not work in this situation because such products are not modular, and in fact, the “error integrals” that occur in the transformations of the mock theta functions can (and often do) make a significant contribution to the asymptotic series. The resulting series include principal part integrals of Bessel functions, whereby the main asymptotic term can also be identified. To illustrate the application of our method, we calculate the asymptotic series expansion for the number of partitions without sequences. Andrews showed that the generating function for such partitions is the product of the third order mock theta function χ and a (modular) infinite product series. The resulting asymptotic expansion for this example is particularly interesting because the error integrals in the modular transformation of the mock theta function component appear in the exponential main term.
منابع مشابه
An Extension of the Hardy-ramanujan Circle Method and Applications to Partitions without Sequences
We develop a generalized version of the Hardy-Ramanujan “circle method” in order to derive asymptotic series expansions for the products of modular forms and mock theta functions. Classical asymptotic methods (including the circle method) do not work in this situation because such products are not modular, and in fact, the “error integrals” that occur in the transformations of the mock theta fu...
متن کاملOverpartitions with Restricted Odd Differences
We use q-difference equations to compute a two-variable q-hypergeometric generating function for overpartitions where the difference between two successive parts may be odd only if the larger part is overlined. This generating function specializes in one case to a modular form, and in another to a mixed mock modular form. We also establish a two-variable generating function for the same overpar...
متن کاملA new restructured Hardy-Littlewood's inequality
In this paper, we reconstruct the Hardy-Littlewood’s inequality byusing the method of the weight coefficient and the technic of real analysis includinga best constant factor. An open problem is raised.
متن کاملA more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...
متن کاملDesign and Evaluation of a Method for Partitioning and Offloading Web-based Applications in Mobile Systems with Bandwidth Constraints
Computation offloading is known to be among the effective solutions of running heavy applications on smart mobile devices. However, irregular changes of a mobile data rate have direct impacts on code partitioning when offloading is in progress. It is believed that once a rate-adaptive partitioning performed, the replication of such substantial processes due to bandwidth fluctuation can be avoid...
متن کامل